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Poincar6 coherent states: the two-dimensional massless case 
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AbstraeL Coherent states for the positive mass representations of the bincar6 
goup  in 1 + 1 dimensions have k e n  obtained previously, using the tact that these 
repmentations are square integrable moduli of the subgroup of time translalions. Here 
lhe method js atended ty mmbining d o n s  hom the mset space into the p u p  with 
homeomorphisms of the m e t  space (these map are called quasi-sections). Then the 
generalized consvUetion k applied to the zero m a s  representations of the (1 + 1)- 
dimensional Poincar.5 gmup, which are square integrable moduli of a subgroup of 
light-like translations The muiting coherent slates, indexed as before by pints in 
phase space, yield a resolution of the identily in the k e i n  space of lhe zero mass 
representations (the first evplicit example of such a aructure), and it turns out that they 
coincide with the familiar wave:ets based on the ‘az + b’ gmup. 

1. Entmduction 

In View of their importance in all branches of physics, coherent states have graduaIly 
been defined in situations of increasing generality. In terms of group theory, this 
means extending the construction of coherent states from the Weyl-Heisenberg 
group (the so-called canonical coherent states) to larger and larger groups-the basic 
ingredient being a square integrable unitary representation (see [l] and [Z] for a 
review). 

However, groups of the form of a semidirect product G = V A L, with V a 
vector space and L c GZ(V), are not amenable to this treatment: the relevant, 
Wigner-type, representations are not square integrable. mica1  in this respect are the 
Euclidean, Galilei and Poincar6 groups; precisely the relativity groups mast commonly 
used in physics! This situation prompted Mi, Gazeau and one of us 13-61 to extend 
the coherent states machinery to representations which are only square integrable on 
a homogeneous space G/H,  where H is a closed subgroup of G (and even further, 
to a setup without any reference to group representations at all). The central point 
of the construction they proposed is the choice of a section U : G/ H -+ G such that 
one can deline a generalized square-integrability condition (see equation (21)). 

Using this notion, one may build up sets of coherent states for the various 
representations of the relativity groups; in particular coherent states for massive 
representations (m > 0) of the Poincari group in 1 + 1 space-time dimensions are 
exhibited in [3-6] (everything works as well in the ‘physical’ (1+3)-dimensional case.). 
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592 J-P Antoine and U Moschella 

In this paper we want to construct coherent states for massless representations 
(m = 0) of the two-dimensional the Poincare group Pl(1,l). This is the first step 
toward a similar analysis for the ( i n i t e  dimensional) conformal group. However, 
in two dimensions there is a sharp difference between the massless and the massive 
case. The massive representations, which live on the corresponding mass shell, are 
irreducible and unitary. In the same way, there exist two massless representations, 
both irreducible and unitary, living respectively on the two pieces of the light-cone, 
ICo = klk'l, and corresponding to the solutions of the classical wave equation 
OW = 0 171 (note that the representation spaces do not contain the Schwara space 
as a dense subspace). However these representations are inadequate for a relativistic 
quantum theory. Indeed, as is well known 18-12], the massless two-point function does 
not satisfy the positivity condition of a Wightman quantum field theory (am), because 
of the infrared problem which is more severe in two dimensions than in four. Hence, 
for obtaining a fully satisfactory massless QFT in two dimensions, one must enlarge 
the representation space and use an indefinite metric space. The resulting massless 
representation of Pl(1,l) is non-decomposable and non-unitary, and the previous 
unitary representations may be derived from it by taking an appropriate quotient 
(we recall in the appendix the explicit construction of the relevant representations, 
massive and massless, according to [12-151). The m a t  interesting features of the 
corresponding quantum field theory are precisely linked to the infrared properties 
of this indefinite metric representation, and are completely lost when one restricts 
it to the unitary ones. In particular, these infrared properties are at the basis of 
the fermion bosonization, the possibility of exact solution of the Schwinger and the 
Thirring models, and almost all phenomena regarding the exactly soluble models of 
two-dimensional quantum field theory [lo]. 

The same infrared divergences also cause a failure of the construction of coherent 
states given in [MI, when applied to the present case: for all the 'natural' sections, 
similar to those used in the massive case 161, there is no vector that satisfies the 
integrability condition (2.1). In other words, the formalism of 13-61 is too restrictive, 
and, to cover the massless case, we are forced to extend it. 

The general construction that we will use is presented in section 2 As compared 
with 161, the new aspects are twofold. Erst, following 1161, we do not assume 
that the coset space X = G/H has a G-invariant measure, but only a quasi- 
invariant one (this permits us to treat the case of a non-unimodular subgroup H ,  
and some infinite-dimensional groups as well 1161). Second, we allow sections of the 
principal bundle (G, r, G / H ,  H) to be combined with homeomorphisms of the base 
manifold X = G/H, (2.8). We will call the resulting maps 'quasi-sections'. This 
essentially means that we are now considering sections in a certain induced (or pull- 
back) bundle 1171 defined by the given homeomorphism of the base manifold. Then, 
as before, when the appropriate integrability condition is satisfied, the construction 
yields an overcomplete set of vectors, called quasi-coherent states. They have all the 
nice properties usually associated with coherent states and needed for applications. 
However, for reasons of consistency, we reserve the name coherent states to those 
that are obtained by transporting a k e d  vector (or set of vectors) over X under the 
action of G, in a cmarillnf way. This definition covers all cases treated previously in 
the literature [1,2]. Clearly, if the quasi-section is not a genuine section, the resulting 
states will be only quasi-coherent, but for applications this makes little difference. 

Thus, the construction of (quasi-)coherent states amounts to finding a suitable 
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homogeneous space X = G/H for which an admissible quasi-section exists, i.e. a 
quasi-section which verifies the square integrability condition for the representation 
considered (see (2.8)). Since the coherent states will be indexed by points of X, 
a natural question is whether the homegeneous space X has a physical meaning 
(at least in the case of the relativity groups). Quantization arguments [16,18] 
suggest that X should be a phase space for the system at hand. This choice has 
several advantages. Contrary to their space-time relatives, phase space realizations of 
quantum mechanics are very well adapted to the description of localization properties 
and of the measurement process [19]. In addition it is a nice way of recovering 
the classical character of coherent states, since phase space is the natural arena of 
classical mechanics Now there is a distinguished class of phase spaces associated 
to a given Lie group G; they are the orbits of G in g’ (the dual of the Lie 
algebra g) under the coadjoint action [ZO]. Such orbits have a natural symplectic 
(even Dhler) structure, a unique measure invariant under the action of G (up to 
normalization) and they correspond to unitary representations of G by the familiar 
Mackey-Kirillov construction Going back to our coherent states problem, each 
coadjoint orbit of G may be identilied with a corresponding homogeneous space 
G/H, H being the stabilizer of a given point of the orbit. In section 3 we briefly 
analyse the coadjoint orbits of P:(l,l). Each non-degenerate orbit corresponds to a 
unique unitary irreducible representation, massive or massless, as described in section 
6. 

The new formalism we are presenting here is much more flexible than the old one, 
and it also has interesting consequences in the massive case; new systems of coherent 
states are constructed and discussed in section 4. On the other hand it permits the 
construction of massless Poincart coherent states, as we show explicitly in section 5. 
As a byproduct, we obtain two interesting results. First, as expected, the massless 
coherent states generate a resolution of the identity, but in an hdefkite mfrk space, 
namely the Krein representation space. As far as we how,  this is the first explicit 
example of such a resolution, a result of intrinsic mathematical interest. TO be sure, 
the case met here is the simplest one, in which the Krein space is a Pontriagin space. 
Nevertheless our result already suggests the pwibility of extending the construction 
of coherent states to non-unitary representations of groups. It also opens a new 
direction of investigation related to gauge theories, since, as is well known, the latter 
may be quantized in a covariant way only with an indefinite metric. The massless 
scalar field in two dimensions treated here is indeed the simplest example of a gauge 
theory with local gauge invariance. Second, if one chooses a suitable quasi-section 
of the principal bundle ( P : ( l , l ) , ~ , P i ( l ,  1 ) / ~ 5 , ( ~ ) ,  Ll( , ) )  (L,(?) is the subgroup of 
left (right) light-like translations), the massless coherent states of Pi(1,l) coincide 
with wuvelets. The latter are usually defined as coherent states associated with the 
affine group ‘ax + b’ of the line. We see here that they are also mussless coherent 
states for the Poincart group. This fact opens a new and major range of applications 
for wavelets; two-dimensional quantum field theory. Actually this connection between 
Poincart coherent states and wavelets is not so surprising, since the Poincar.4 group 
P i ( 1 , l )  and the affine group ‘a+ + b’ have the same half-plane as phase space. 
Indeed the link has been noticed in the literature [7,21], although not always explicitly. 
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2. Coherent states: the general construction 

In a previous series of papers, Ali, Gazeau and one of us [?4J introduced a 
generalized notion of square integrability for a p u p  representation, which is the key 
point for constructing coherent states when the usual methods fail [1,2]. However, for 
the massless representations of the PoincarB group, we have to extend that method 
one step further. Let us resume the main features of the construction given by [W. 

Let G be a locally compact group and H a closed subgroup of G. Consider the 
m e t  space X = G/H and let v be a (quasi)-invariant measure on X [22]; such a 
measure always exists and is unique, up to equivalence (only the case of an invariant 
measure was considered in 13-61; the general case is discussed in [16]). Denote by 
du,(z) = dv(g-'z) the translated measure and by X(g,z) = dvg(z)/dv(z) the 
corresponding Radon-Nikodym derivative. 

Let U ( g )  be a unitary irreducible representation of G on a Hilbert space 31 and 
let U :  G/H + G be a section of the canonical principal bundle (G, T, G / H ,  H). 
The representation U is called square integrable mod (H, U )  if for some C E 'H the 
following integral converges and is strictly positive for all 4 E 2) c 31, D dense 

J-P Antoine and U Maschella 

IAC,4) = I(U(U(+))C,4))71I2X(U(~)r2)d~(~) <CO (n 1) 
X 

where X(a(z),z)dv(z) = dvrczl(z); in other words, if the quadratic form (2.1) 
defines a positive inverrible operator A$ 

0 < 1 , ( 5 ' , 4 ) = ( 4 , A $ 4 ) < ~  . W E D D .  (2.2) 

When this condition is satisfied, the family of vectors: 

is a family of coherent slates with all the expected properties. All those vectors for 
which the integral (2.1) converges are called admissible, and the section U itself is 
said to be Odmissibk for U. If C itself is in 'D, we define 

CAC) = 1&C, C). (2.4) 

Three remarks are in order here: 
(i) the inclusion of the factor A(u(z),z) in (21) guarantees the covariance of 

the admissibility condition: if the section U is admissible for U, so is every section ug 
obtained from U by the natural action of G on X [ lq.  If the measure v is invariant, 
X(g, z) 

(ii) The factor X(o(x),z) also implies that the admissibility condition (2.1) 
depends only on the equivalence class of the measure v, indeed if v' is another 
quasi-invariant measure, it is necessarily equivalent to U, i.e. dv'(z) = a(z)dv(z) .  
then one has 

1 and one gets back the situation of [3-6]. 

and therefore 

A'( U (  z), z) dv'( z) =~ a ( ~ ( z ) - ~ z ) X (  U(  z) , x) dv( z). (2.6) 



Massless coherent states 595 

Since z = u(z)zo for some base point zo E X, it follow that a(u(z)-'z) = a(zo)  
is a constant and the integrability condition (2.1) is independent on the choice of the 
quasi-invariant measure. 

(i) The definition (2.1) is, in fact, slightly more general than the one given in 
[MI since it allows the possibility of 'resolving' an unbounded operator for 2, + 31 
(see later; this possibility was also mentioned in [6, proposition 221). 

We now spell out the square-integrability condition which generalizes the condition 
(2.1) and that we will need later in specific cases. As before, let G be a locally 
compact topological group, H a closed subgroup of G, U ( g )  a unitary irreducible 
representation of G in a Hilbert space 31. We call a quasi-section of the principal 
bundle ( G ,  r, G / H ,  H )  a map U, which satisfies the following condition: 

u j : G / H + G  and T ' U j  = f (2.7) 
where f is a homeomorphism of G / H  into itself. It is clear that the quasi-section U, 

is the product  of of a genuine section and a homeomorphism of the base manifold. 
We say that the representation U ( g )  is square integrable mod(H, 0,) if for some 

5 E 31 the following integral converges and is strictly positive for all 4 E 2, c 31, Z, 
dense: 

L,(C>4) = J I(u(a,(z)C,4)XIZdy(z). (2.8) 
X 

Looking at U, as Q . f ,  where Q = Q, . f-' : G / H  -+ G is a genuine section 
of the principal bundle G + G / H  performing the change of variables y = f(z) 
in (28),  one obtains an integral similar to the previous one (Zl), but with dv(z) 
replaced by dp(z)  = (f-')'(z)du(z). The resulting measure p is not usually the 
u(z)-translate of U, since (f-*)'(z) + X(u(z),z) in general. Therefore we shall 
call the vectors <ucs) = U ( a .  f (  z))< a family of quasi-coherent states. They enjoy all 
the nice properhes of the coherent states (23) except coiariance, in the sense that 
the two properties (i) and (i) do not necessarily hold any more. 

In fact, if we replace in (2.1) du+)(z) = A(u(z),z) du(z) by an mbiti-ay quasi- 
invariant measure dp(z)  = a (z )du(z ) ,  with a(z) + A(u(z) ,z) ,  we still do have 
a useful overcomplete set of vectors, namely 

62 = {C&) = u(Q(z))C, z E XI. (2.9) 
As before those vectors will be called quasi-coherent states [MI. However, it may 
happen that the integral with the covariant factor X(u(z), z) instead of a(.), actually 
diverges; this means that there are no 'true' coherent states associated with the section 
U,  and the given representation. 
RI conclude with generalities, it is worthwhile to mention that one still faces the 

fact that the operator Ai,, which is 'resolved' by the family of coherent states thus 
constructed is not necesardy a multiple of the identity. However it is always possible 
to recover a genuine resolution of the identity by introducing a weighting operator 
[U, 23,241. Thus in all cases one ends up with quasi-coherent states. 

3. Coadjoint orbits of 'Pl(1,l) 

In this section we briefly examine the coadjoint orbit structure of ?i(l,l). This is 
important because, as we will see, the coherent states that we are going to construct 
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will be labelled by pints of suitable coadjoint orbits (phase spaces), and, as was briefly 
mentioned in the introduction, this fact makes them central objects for quantization 
procedures. The method that we will apply follows that of [E] and may be applied 
in all cases in which the Lie group is a semidirect product (see also [%I). 

Let L be a Lie group and V a real vector space. Given a representation of L 
on V, we can construct the semidirect product G = V A L. Elements g of G are 
written as follows 

J-P Antoine and U Moschella 

g = ( v , A )  = [:: 4 
where v E V,A E L c GL(V). Elements G of the Lie algebra of G, denoted 
g = V @ l, are then written as 

g = (w,Y) = [i 4 
where w E V, Y E I c g l (  V). The adjoint representation of G on g is defined by 

(3.3) 

Let us write a generic element of g* = V' @ [* as (E ,X)  with 5 E V*, X E [*. Then, 
denoting the coadjoint representation of G as AdH, we obtain 

(AdH(g)(E, N , G ) g . , n  = ( ( E ,  X),Ad(g)-'s) g.,g 
0.4) 

= ([,A-'Y~+A-'W)~.,~ + (X,h-'YA) I - , ~ .  

For E V' and v E V define Eov E [* by 

(E@v,Y) I',! = (E,Yv)v.,v. 0.5) 

Aa'(g)(E, A) = ((A-')*€,Adm1(A)A + (A-')*E 0 v). 

Then we finally get the formula 

0.6) 
Here Ad! indicates the coadjoint representation of L on [*, and (A-')* the 
representation of L on V' contragredient to the original one on V. For more 
details on this subject see [20,25,%]. 

Let us apply (3.6) in the concrete case G = 'P:( 1,l) = M Z  ASO,(l, 1) (see also 
[27l and, for the corresponding analysis in the (1 + 3)-dimensional case, [26,zS, 291). 
We may identify M Z  with its own dual by using the Minkowski inner product. 
Elements of SO,(l, 1) = 121 will be parametrized in the following way 

The corresponding Lie algebra so(1,I) Y R is generated by the element 

(3.7) 

%=[; 4. 
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This fact, together with (3.7), implies that Ad/(A,)X = X and therefore the coadjoint 
orbits of SOQ(l, 1) are given by the following formula: 

Ad'(g)(€> = ( A P E ,  + ( A p € ,  Y O V ) M Z )  0.9) 
where g is as in (3.1) ,with A, E L~,[,v E MZ and (.,.)MZ denotes the Minkowski 
inner product Now we can easily identify the coadjoint orbits of Pl(1,I): they are 
given by the following families of hyperbolic cylinders (m > 0): 

(3.10) 

the four half-planes 

C O =  *E' €0 > 0 [ Q  =A€' € Q < O  (3.11) 

and the degenerate orbits consisting of a single point 

X = constant E = 0. (3.12) 

The non-degenerate coadjoint orbits may be interpreted as classical phase spaces 
corresponding to elementary systems having 'Pl(1,l) as relativity group [20]. 

As we will see, they are particularly suited for the construction of systems of 
coherent states and it turns out that in each such system the states are indexed by 
the points of a certain coadjoint orbit Every orbit in turn may be identified with a 
homogeneous space X = 'Pi(l,l)/H, where H is the stabilizer of a given point of 
the orbit under the coadjoint action. 

4. Application: massive coherent states for 'PJ(1,l) 

For a better understanding of the role of the squareintegrability condition that we 
have introduced in (229, we now return to the specific case of the Poinard group (the 
representations of Pl(1 ,1) corresponding to a particle of mass m are displayed in 
(A.13)). We have to select a homogeneous space to apply the previous construction. 
It is natural to choose, as the homogeneous space, the corresponding classical phase 
space 13,301, i.e. the coadjoint orbit rm," : Eo = JG. Let us examine 
more closely the case m = 1. The corresponding orbit rl is generated by the point 
X = O,[ = (1,O). Since the stabilizer of this point is the subgroup T of time 
translations we obtain that rl is isomorphic to the homogeneous space PIIT [20]. 

rl is the hyperbolic cylinder of equation t" = *. We may choose different 
parametrizations of this orbit; the simplest one is that obtained by projection on the 
Eo = 0 plane, which is given by 

( r , p )  with r = A, p = E'. (4.1) 

These coordinates do not have the meaning of classical position and momentum, 
contrary to the coordinates ( q , p )  used in [MI. The relation between the two sets 
reads as follows 

q = r / p Q  p = p  W i t h p u = m .  
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Nevertheless they are useful in the construction that follows. The coadjoint action 
may now be rewritten in the following way 

J-P Anfoine and U Moschella 

(7,P) - (T ' ,P ' )  = ( % A k ) ( T , P )  (4.3) 

with 

7' = r + (Akp,Y&)M~ p' = pku + kpo. (4.4) 

Thus the coadjoint action on I?, may be identified with the left action [4] of Pi(1,l) 
on P$(I, I)/T. 

The orbit rl carries a unique (up to normalization) measure invariant with respect 
to the uansformations (4.4). In the parametrization (4.1), this invariant (Liouville) 
measure reads as 

drdp  dv(r ,p)  = -(= dqdp). 
PU (4.5) 

At this point we have to choose admissible quasi-sections af = U . f : rl + 

Pi(& 1) , for suitable homeomorphisms f : rl + rl; each choice will lead to a set 
of quasi-coherent states. We give three examples of such quasi-sections. 

4.1. Nafural (or naive) quasi-section 

This quasi-section is defined by 

o,(.~,P) = ( (O,r) ,Ap) .  (4.6) 

It turns out that everj vector of X,,, E L*(V;=,, dk/ku) (for simplicity we write 
k k') is admissible and the following equality holds (in the sense of quadratic 
forms): 

J ,  l ~ ~ ~ l ~ ~ n ~ ~ , P ~ ~ c ~ ~ ~ ~ ~ l ~ ~ n ~ ~ ~ P ~ ~ c l ~ ~ ~ ~ ~ P ~  = C$-' (4.7) 

where H is the energy operator, defined on a dense subset of Xm=, by 

( H G ) ( k )  = kUd4k) (4.8) 

H-I is its (bounded) inverse and Cc is a constant depending on c. Since H is 
unbounded, this quasi-section does not yield a frame [5]. Notice that, if 

c E D( H"Z) (4.9) 

then also Um=l(un(r,p))c E D ( H ' / ~ )  and we obtain that the states 

C,,,(k) E ( ~ H 1 ' * U ~ = l ( a , ( r , p ) ) c ) ( k )  = @eirk C(pUk - pkU) 

yield a resolufion of fhe identify. 

(4.10) 
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4.2. General GaUean quasi-section 

The quasi-section U, is a particular case of the following general class of quasi- 
sections obtained from U,,: 

UCa,(T>P) = ((0,!NP)7),Ap(p)) (4.11) 

where C$ : ( r , p )  H ( $ ( p ) r , p ( p ) )  is a homeomorphism of rl onto itself. Such 
quasi-sections may be called 'Galilean' because they assign the value au = 0 to every 
point ( T, p ) .  For these general quasi-sections one may compute explicitly the class of 
admissible vectors and the corresponding 'resolved' operator. 

4.3. Canonical section 

"hiis section is given by 

O O ( ~ > P )  = ( ( O , T / P ' ) ~ A ~ ) .  (4.12) 

We call it kanonical' because it is a genuine section of the principal bundle, and also 
because the coordinates ( r / p " , p )  = (p,p) may have the interpretation of position 
and momentum. This section has been studied in 13, q, where it was called p,,. In this 
case one can show that admissible vectors must satisfy again condition (4.9); under 
such condition we obtain the following weak identity 

J,, I~,,l(~U(.,P))C)(U,,'(~U(.,P))CId~(.r, P) = A{ (4.13) 

where both AC and A;' are bounded operators on 'HH,=,. Thus in this case we 
obtain a frame (in general not tight) [SI. 

5. Massless coherent states 

Let us now pass to the construction of masslesss coherent states. Again we have 
to choose a suitable homogeneous space and a unitary irreducible representation of 
Pi(1,l) which correspond to the massless case. First we identify the classical phase 
space corresponding to a massless relativistic particle. A look at the structure of 
the coadjoint orbits shows that the ones corresponding to a massless particle are the 
half-planes 

r, = {A E I!&[ E MZ: t" = -[I,<' < 0): 
rr = {A E R , t  E Mz : tu = <',<' > 0}: 

left orbit (54 

(5.2) right orbit. 

Let us concentrate our attention on rr. This orbit is generated by the point 
A = 0, = (1,l). The stabilizer of this point is the subgroup of right light-like 
translations 

L, = {g E Pi(1,I) : g = (u , l ) ,u"  = U'} (5.3) 
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and therefore rr e PJ(1, l) /Lr. A global parametrization of this orbit is again given 

J-P Antoine and U MoscheUa 

bY 

( . , p )  with .r= x p = 5'. (5.4) 

( . r , P )  --* (T ' ,P ' )  = (%A.k ) (T ,P)  

7' = T + ( A k p , & a ) ~ z  

In terins of these coordinates the coadjoint action reads 

P' = (ku + k ) p  (5.5) 

and the invariant measure becomes 

d ~ ( . r , p )  = drdp/p .  (5.6) 

As for the choice of the representation, we consider the representation U, on the 
Hilbert space 31, that is displayed in (A.26) (we write again k ZE k'). Now we must 
choose a quasi-section U : rr -+ Pi and ey to construct coherent states out of it. 
First of all notice that the natural quasi-section gR(.r,p) = ((0, ?) ,Ap) cannot do 
the work Indeed it may be directly verified that there is no E X, such that 

L.(C34) = J I(U,(a,(.r,p))C,4).H.IZd~L(.r,p) < (5.7 r. 

(the integral is. infrared divergent!). The reason for this fact is that one has 

0 < (Po- p )  < 1 (5.9) 

and therefore the argument of the function 
chosen quasi-section should have the following form 

cannot be arbitrarily dilated. A well 

C,(.r,P) = ((0, T), (5.10) 

where p : Iw+ -, Iw is an auxiliary bijective map. An interesting explicit form for the 
function p is the following one: 

1 P  p ( p )  = - - -. 
2P 2 

The nice features of this function are due to the following fact 

(5.11) 

(5.12) 
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and therefore 

r C p ( ~ , 4 )  = J 1(~,(u~(r ,p))~,4)X,1~dlL(r~p) = 1 F l  ~ I C ( ~ ~ ) I ~ I + ( ~ ) I ~ .  
dp dk 

r, 
(5.14) 

Now we apply the Fubini-nnelli theorem and exploit the following change of 
variables: 

(5.15) 
du dp 
U P  

u = k p  -=-. 

It follows that 

Deline the following operator on 31,: 

(Hr4)(k) = W k )  4 ED(Hr). (5.18) 

H, is an unbounded self-adjoint operator on D( H,) c 31, and I,, (C, 4)  exists if and 
only if 4 E D(Hr-’”). In this case it follows that 

~ ~ I V , ( u , ( . r , P ) ) O ( u ~ ( u p ( 7 , P ) ) C l d ~ ( T , P )  = CCH;’ (5.19) 

in the sense of quadratic forms. Thus, the vectors given in (5.13) constitute a set 
of massless coherent states for every C E Xr, but the operator that is ’resolved’ in 
(5.19) is not bounded and, moreover, its inverse is also unbounded. Because of these 
facts, this set of coherent states is more general than those considered in [q. Let 
us exploit our freedom in the choice of quasi-sections (and bundle structure) to get 
a more appealing set of massless coherent states. The quasi-section that will do the 
work is given by 

Ur(.rrP) = ( ( o , T / P ) , L p ( p ) ) .  (5.20) 

With the help of this quasi-section we get the following set of states: 

(ur(ur(T,P))C)(k) = ei(‘/P)kC(k/p) C E 31,. (5.21) 

In this case the integral (2.1) becomes 

By using the Fubini-’belli theorem again and the following change of variables 

U2 k 
P k du = -- dp (5.23) U = -  
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we obtain 
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(5.24) 

Therefore, vectors 5 E 31, are admissible for the quasi-section (5.20) if and only if 
they satisfy the condition C E ZJ( H;'"). If this condition is satisfied we obtain 

i.e. we get a genuine resolution of the identity! We call the states defined in 
equation (5.21) right coherent states. In a perfectly identical way we may construct a 
corresponding set of ceft coherent stares. Points in r, are parametrized by (7, p). with 
7 E R and p E R- ; the quasi-section has exactly the same form as in (5.20): 

UI(T>P) = ( ( 0 7 7 / P ) > A - & ) ) .  

Left coherent states are then defined by 

with + E 'HI, 1/, E Xr. 
An interesting feature of the sets of coherent states, (5.21) and (5.27), is the fact 

that they are exactly identical to wavelets, i.e. the coherent states of the affine group. 
Indeed, we may easily convince ourselves that the previous coherent states coincide 
with the wavelets given for instance in [31] making the following identilications: 

Note that the admissibility condition C E ZJ( H;'") becomes 

The invariant measure now reads 

(5.29) 

(5.30) 

d r d p  dadb dp(7,p) = - = - 
P a2 . (5.31) 
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Define now the foUowing operator: 

dk - -+ L2(R+, dk) k U : 31, = Lz(R+) (5.32) 

Then we obtain 

(5.34) 

which is exactly the wavelet transform for a progressive wavelet 'p (cf [31, section 
3.11). 

There is another interesting analogy; it is lolown that the affine group manifold, 
namely the Poincare half-plane a > 0, b E R is a phase space (this situation is in fact 
general; for any dimension n, the parameter space of ndimensional wavelets has the 
structure of a phase space, see [32] for a discussion of the case n=2). The same 
phase space is recovered by looking at the coadjoint orbits of the Poincark group. 

The identification between massless coherent states and wavelets opens interesting 
perspectives. So far (one-dimensional) wavelets have only been considered as with 
coherent states associated to the ' a z  + b' group, and thus have been used in various 
problems of classical non-relativistic signal analysis. Now we see that the same 
wavelets are also particular coherent states of the ( I+  1)dimensional Poincare group, 
corresponding to the massless Wigner representation (see also [21, 7). This suggests 
that they could find applications in (1 + 1)-dimensional quantum field theory and, 
more generally, in conformal field theory. 

In that context it is also important to understand the relationship between wavelets 
and coherent states associated with massless representations of the twodimensional 
de Sitter groups SO,(1,2) and the corresponding conformal group SO&?, 2) 14,331). 
Work in this direction is in progress. 

Acknowledgments 

UM thanks the Institut de Physique Thkorique, Universite Catholique de Louvain for 
financial support. Both authors thank S nMreque Ai, S DeBikvre and J-P Gazeau 
for stimulating discussions on coherent states. They also thank the referee for some 
clarifications. 

Appendix. Representations of Ps  (1,l) 

The aim of this appendix is to derive the Wigner representations of P & ( l , l )  
corresponding to m > 0 by a method which allows the extension to the case m = 0. 
This method is nothing other than an application of Wightman's reconstruction 
theorem [13]. The key point of this construction consists in finding a Poinark 
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invariant and positive definite two-point distribution W,(z, y) which is solution of 
the HeinGordon equation 

.I-P Antoine and U Moschella 

(0 + m2)W, = 0. (A 1) 

Because of Poincar6 invariance we get that W,(z, y) = W,(z - y). Furthermore 
we require W,(.$) to be a positive definite distribution and its Fourier transform to 
have support contained in the future cone. Let S(R2) denote the Schwartz space 
of infinitely differentiable functions with fast decrease at inlinity. There is a natural 
representation of F+?(l, 1) on S(R2) given by 

( U ( a , A ) f ) ( + )  = f(A-'(+ -a))- 

By Fourier transform we obtain the dual representation 

(U(a,A)f)(k) = e'"f(A-'k) 

where we have defined 

(-4.3) 

(-4.4) 
f(k) = ,Jeik"f(z)d2z 1 

and kz is the Minkowski inner product kz = kUzu - IC's'. Now we may introduce 
an inner product in S(Rz) by the following definition 

(f,g), = ?(+I W,(+ - y)g(y) dzzdzy. (-4.3 

An explicit expression of the two-point function W,(z - y) is obtained simply by 
taking the Fourier transform of (-4.1) 

(k2 - mz)%(k) = 0. 

%(k) = ce(ku)qk2 - (-4.7) 

(A61 

%king into account the required support properties of % we obtain 

and therefore 

or 

The Wightman ideal is defined by 

G = If E S(R2) : (f,g), = 0,vg E S(RZ)}. 

(-4.9) 
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The inner product (AS) depends only on equivalence classes of 'D = S(R2)/2$) and 
it k not degenerate on 'D. It is clear that the representation (A3) cames equivalence 
classes into equivalence classes and therefore induces a representation of P:(l,l) on 
'D. The completion of the set 'D in the topology defined by the inner product (AS) 
gives the Hilbert space 

71, = L2(Vz,dk1/ku) (A 11) 

where V i  is the forward mass hyperbola, defined by 

V: = (ku, IC') E R2 : ku = k" + m2 . (A121 { J---1 
Now the representation (A3) may be extended to the whole 31, and we obtain the 
following unitary irreducible representation of Pi(1,l) on 31,: 

( U , ( u , A ) $ ) ( k )  = e'"$(A-'IC) ('4-13) 

which is exactly the Wigner representation of mass m. 
The extension of this method to construct a representation of Pi(1,l) in the zero 

mass case is not immediate. Indeed, as is well known [SI, there does not exist any 
Poinard invariant positivedefinite two-point distribution W satisfying the equation 
OW = 0 and such that 

supp F ( k )  = C+ = { k  E R2 : k"k, = 0, ICo > 0). W 4 )  

However, if we relax the positivity condition, we may find a Poincari invariant 
distribution having the desired support properties, namely 

w(e) = --log(-c2 + ice"). (A15) 
1 

4% 

This distribution is not positivedefinite and therefore the previous construction gives 
only a non-degenerate sesquilinear form on the corresponding 'D 

( f ,d  = / f ( z )Wz  - v)s(v)d2id2y.  (A-16) 

As before 'D carries a representation of Pi(1,l) given by (113). In order to obtain a 
representation on a Hilbert space we must add a new ingredient; we have to complete 
2, using a Hilbert majorant topology [14,34], i.e. a Hilbert inner product (., .) defined 
on 27 such that 

I (f,s) I$ llfllllsll where Ilfllz = (f,f). (A17) 

The explicit construction runs as follows 112,151. Let x E S(R2) such that g(0) = 1, 
(x, x) = 0. Given f E S(R2) define 

f " ( Z )  = f(*) - m x .  (A181 
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Then the desired inner product may be written as 
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(f,s) = (f">SO) + (f,X)(X>9) + I  (O)G(O) .  (A191 

It may he directly verified that (k19) defmes a Hilbert majorant topology. We may 
complete D in this topology and obtain the Krein space [MI (actually it is a Pontriagin 
spa-) 

71 = Lz( C+, dlc'/l]e'l) CB V X 0120) 

where X is the onedimensional subspace generated by the function x while V is the 
one-dimensional subspace generated by the vector 2) which is defined (by the Riesz 
lemma) as the representative of the functional 

f - (x, f )  = (U> f) .  ('4.21) 

There exists a bounded self-adjoint operator 7 such that 

U, 9) = (f> 119) (A.22) 

and it may be proved that q2 = 1 (Krein topology). Now the representation (A.3) 
extends to a representation U of Pi(1,l) defined on a dense subset of 31. Several 
remarks are in order. Fmt of all we stress that this representation is not unitary 
butonly q-unitaly,ie. (U(a,A)f,U(a,A)g)= (f,g) but (U(a,h)f,U(a,h)g)# 
( f, 9). Second, the representation U is neither irreducible nor completely reducible, 
but non-decomposable. As a final remark we notice that the Hilbert subspace Lz 
may be decomposed into the following direct sum 

L2(C+,dk1/[lc'l) ='HH,@'H, (A.23) 

XI = L2(R-,dlc111c'I) 'H, = Lz(R+,dlc'/k') (A.24) 

(left and right Hilbert spaces) and correspondingly we may quotient the representation 
U and obtain two unitary irreducible representations U<., defined on %,(,). This 
amounts to considering the matrix elements 

($1, U ( % N $ 2 ) X , ( , )  $1, $2 E 'HI(,) (A.29 

and associating with the sesquilinear forms so defined the operators U,(r)(u,A). The 
6nal result is 

(U(a,A)l(r)?b)(lc) = e'"$(A-'k) li, (A.26) 

These are the representations of PJ(1,l) that are used in the construction of systems 
of massless coherent states (but the resolution of the identity that we obtain in the 
end lives in the Krein space H). 
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