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Abstraet.  Coherent states for the positive mass representations of the Poincaré
group in 14 1 dimensions have been obtained previously, using the fact that these
representations are square integrable moduli of the subgroup of time transiations. Here
the method is extended by combining sections from the coset space into the group with
homeomorphisms of the coset space (these maps are called quasi-sections). Then the
generalized construction is applied to the zero mass representations of the (1 + 1)-
dimensional Poincaré group, which are square integrable moduli of a subgroup of
light-like translations. The resuiting coherent states, indexed as before by points in
phase space, vield a resolution of the identity in the Krein space of the zero mass
representations (the first explicit example of such a structure), and it turns out that they
coincide with the familiar wavelets based on the ‘ez + &’ group.

1. Introduction

In view of their importance in ali branches of physics, coherent states have gradually
been defined in situations of increasing generality. In terms of group theory, this
means extending the construction of coherent states from the Weyl-Heisenberg
group (the so-called canonical coherent states) to larger and larger groups—the basic
ingredient being a square integrable unitary representation (see [1] and [2] for a
review).

However, groups of the form of a semidirect product G = V AL, with V a
vector space and L C GI(V), are not amenable to this treatment: the relevant,
Wigner-type, representations are not square integrable. Typical in this respect are the
Euclidean, Galilei and Poincaré groups; precisely the relativity groups most commonly
used in physics! This situation prompted Ali, Gazeau and one of us [3-6] to extend
the coherent states machinery to representations which are only square integrable on
a homogeneous space G/ H, where A is a closed subgroup of G (and even further,
to a setup without any reference to group representations at ail). The central point
of the construction they proposed is the choice of a section & : G/ H — G such that
one can define a’ generalized square-integrability condition (see equation (2.1)).

Using this notion, one may build up sets of coherent states for the various
representations of the relativity groups; in particular coherent states for massive
representations (m > 0) of the Poincaré group in 1+ 1 space-time dimensions are
exhibited in [3-6] (everything works as well in the ‘physical’ (14 3)-dimensional case).
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In this paper we want to construct coherent states for massless representations
(m = 0) of the two-dimensional the Poincaré group 'PI_(I,I). This is the first step
toward a similar analysis for the (infinite dimensional) conformal group. However,
in two dimensions there is a sharp difference between the massless and the massive
case. The massive representations, which live on the cortesponding mass shell, are
irreducible and unitary. In the same way, there exist two massiess representations,
both irreducible and unitary, living respectively on the two pieces of the light-cone,
k' = Z+|k'|, and corresponding to the solutions of the classical wave equation
OW = 0 [7] (note that the representation spaces do not contain the Schwartz space
as a dense subspace). However these representations are inadequate for a relativistic
quantum theory. Indeed, as is well known [8-12), the massless two-point function does
not satisfy the positivity condition of a Wightman quantum field theory (QFT), because
of the infrared problem which is more severe in two dimensions than in four. Hence,
for obtaining a fully satisfactory massless QFT in two dimensions, one must enlarge
the representation space and use an indefinite metric space. The resulting massless
representation of P_T[,(I,l) is non-decomposable and non-unitary, and the previous
unitary representations may be derived from it by taking an appropriate quotient
(we recall in the appendix the explicit construction of the relevant representations,
massive and massless, according to [12-15]). The most interesting features of the
corresponding quantum field theory are precisely linked to the infrared properties
of this indefinite metric representation, and are completely lost when one restricts
it to the unitary ones. In particular, these infrared properties are at the basis of
the fermion bosonization, the possibility of exact solution of the Schwinger and the
Thirring models, and almost all phenomena regarding the exactly soluble models of
two-dimensional quantum field theory [10].

The same infrared divergences also cause a failure of the construction of coherent
states given in [3-6], when applied to the present case: for all the ‘natural’ sections,
similar to those used in the massive case [6], there is no vector that satisfies the
integrability condition (2.1). In other words, the formalism of [3-6] is too restrictive,
and, to cover the massless case, we are forced to extend it

The general construction that we will use is presented in section 2. As compared
with [6], the new aspects are twofold. First, following {i16], we do not assume
that the coset space X = G/H has a G-invariant measure, but only a quasi-
invariant one (this permits us to treat the case of a non-unimodular subgroup H,
and some infinite-dimensional groups as well [16]). Second, we allow sections of the
principal bundle (G, =, G/ H, H) t0 be combined with homeomorphisms of the base
manifold X = G/H, (2.8). We will call the resulting maps ‘quasi-sections’. This
essentially means that we are now considering sections in a certain induced (or pull-
back) bundle [17] defined by the given homeomorphism of the base manifold. Then,
as before, when the appropriate integrability condition is satisfied, the construction
yields an overcomplete set of vectors, called quasi-coherent states. They have all the
nice properties usually associated with coherent states and needed for applications.
However, for reasons of consistency, we reserve the name coherent states to those
that are obtained by transporting a fixed vector {(or set of vectors) over X under the
action of G, in a covariant way. This definition covers all cases treated previously in
the literature [1,2]. Clearly, if the quasi-section is not a genuine section, the resulting
states will be only quasi-coherent, but for applications this makes little difference.

Thus, the construction of (quasi-)coherent states amounts to finding a suitable
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homogeneous space X = G/H for which an admissible quasi-section exists, i.c. a
quasi-section which verifies the square integrability condition for the representation
considered (see (2.8)). Since the coherent states will be indexed by points of X,
a natural question is whether the homegeneous space X has a physical meaning
(at least in the case of the relativity groups). Quantization arguments [16,18]
suggest that X should be a phase space for the system at hand. This choice has
several advantages. Contrary to their space-time relatives, phase space realizations of
quantum mechanics are very well adapted to the description of localization properties
and of the measurement process [19]. In addition it is a nice way of recovering
the classical character of coherent states, since phase space is the natural arena of
classical mechanics. Now there is a distinguished class of phase spaces associated
to a given Lie group G; they are the orbits of & in g (the dual of the Lie
algebra g) under the coadjoint action [20]: Such orbits have a natural symplectic
(even Kihler) structure, a unique measure invariant under the action of G (up to
pormalization) and they correspond to unitary representations of G by the familiar
Mackey-Kirillov construction. Going back to our coherent states problem, each
coadjoint orbit of G may be identified with a corresponding homogeneous space
G/ H, H being the stabilizer of a given point of the orbit. In section 3 we briefly
analyse the coadjoint orbits of P1(1,1). Each non-degenerate orbit corresponds to a
unique unitary irreducible representation, massive or massless, as described in section

The new formalism we are presenting here is much more flexible than the old one,
and it also has interesting consequences in the massive case; new systems of coherent
states are constructed and discussed in section 4. On the other hand it permits the
construction of massless Poincaré coherent states, as we show explicitly in section 5,
As a byproduct, we obtain two interesting results. First, as expected, the massless
coherent states generate a resolution of the identity, but in an indefinite metric space,
namely the Krein representation space. As far as we know, this is the first explicit
example of such a resolution, a result of intrinsic mathematical interest. To be sure,
the case met here is the simplest one, in which the Krein space is a Pontriagin space.
Nevertheless our result already suggests the possibility of extending the construction
of coherent states to non-unitary representations of groups. It also opens a new
direction of investigation related to gauge theories, since, as is well known, the latter
may be quantized in a covariant way only with an'indefinite metric. The massiess
scalar field in two dimensions treated here is indeed the simplest example of a gauge
theory with local gauge invariance. Second, if one chooses a suitable quasi-section
Of the pri.n(:ipal bundle (‘Pi(l, 1), ™, ?I_(]., l)lLl(r)s Ll(r)) (Ll('r‘) iS the Subgroup of
left (right) light-like translations), the massless coherent states of ‘P]_ (1,1) coincide
with wavelets. The latter are usually defined as coherent states associated with the
affine group ‘ez -+ b’ of the line. 'We see here that they are also massless coherent
states for the Poincaré group. This fact opens a new and major range of applications
for wavelets; two-dimensional quantum field theory. Actually this connection between
Poincaré coherent states and wavelets is not so surprising, since the Poincaré group
Pl(l,l) and the affine group ‘ax + b have the same half-plane as phase space.
Indeed the link has been noticed in the literature [7, 21], although not always explicitly,
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2. Coherent states: the general construction

In a previous series of papers, Ali, Gazeau and one of us [3-6] introduced a
generalized notion of square integrability for a group representation, which is the key
point for constructing coherent states when the usual methods fail {1, 2). However, for
the massless representations of the Poincaré group, we have to extend that method
one step further. Let us resume the main features of the construction given by [3-6].

Let G be a locally compact group and H a closed subgroup of G. Consider the
coset space X = G/H and let v be a (quasi)-invariant measure on X [22]; such a
measure always exists and is unique, up to equivalence (only the case of an invariant
measure was considered in [3-6]; the general case is discussed in [16]). Denote by
dv,(x) = dv(g~lx) the translated measure and by A(g,z) = dv,(z)/dv(z) the
corresponding Radon-Nikodym derivative,

Let U(g) be a unitary irreducible representation of G on a Hilbert space H and
let o: G/H — G be a section of the canonical principal bundle (G, n,G/H, H).
The representation U is called square integrable mod (H,o) if for some ¢ € H the
following integral converges and is strictly positive for all ¢ €D C H, D dense

1,(¢, ) =fxI(U(U(w))C,¢)n12k(a(w)sw)dV(w) <o 2.1)

where A(o(z),z)dv(z) = dv,,y(z); in other words, if the quadratic form (2.1)
defines a positive inversible operator A%

0< I((, ) ={d,ASd) <0 - VopeD. (2.2)
When this condition is satisfied, the family of vectors:
&% = {Co(z) = V(o (2), 2)U(a(2))C, = € X} (2-3)

is a family of coherent states with all the expected properties. All those vectors ¢ for
which the integral (2.1) converges are called admissible, and the section o itself is
said to be admissible for U. If ¢ itself is in D, we define

ccr(c) = Ia'(Ci C)' (24)

Three remarks are in order here:

(i) the inclusion of the factor A(o(z),#) in (2.1) guarantees the covariance of
the admissibility condition: if the section & is admissible for U, so is every section o,
obtained from o by the natural action of G on X [16]. If the measure v is invariant,
A(g,z) =1 and one gets back the situation of [3-6].

(ii) The factor A(o(z),z) also implies that the admissibility condition (2.1)
depends only on the equivalence class of the measure v, indeed if ¢/ is another
quasi-invariant measure, it is necessarily equivalent to v, ie. dv'(z) = afx) dv(z).
then one has

dvg(z) _ o(g”'=)
dv'(z) T afz)

Mg, z)= Mg, z) 2.5

and therefore

Mo(z), 2) dv'(2) = a(o(z) "z} A (o), ) dv(a). (2.6)



Massless coherent states 595

Since ¢ = o(z)z, for some base point z, € X, it follows that (o (z)"1z) = a(=zg)
is a constant and the integrability condition (2.1) is independent on the choice of the
quasi-invariant measure.

(iiiy The definition (2.1) is, in fact, slightly more general than the one given in
[3-6] since it allows the possibility of ‘resolving’ an unbounded operator for D # H
(see later; this possibility was also mentioned in [6, proposition 2.2]).

We now spell out the square-integrability condition which generalizes the condition
(2.1) and that we will need later in specific cases. As before, let G be a locally
compact topological group, H a closed subgroup of G, U(g) a unitary irreducible
representation of G in a Hilbert space . We call a quasi-section of the principal
bundle (G, =, G/H, H) a map o, which satisfies the following condition:

0;:G/H -G and wop=f 2.7

where f is a homeomorphism of G/ H into itself. It is clear that the quasi-section o
is the product oo f of a genuine section and a homeomorphism of the base manifold.

We say that the representation U{g) is square integrable mod(H, o) if for some
¢ € ‘H the following integral converges and is strictly positive for all € D C H, D
dense:

1,,(¢,) = fx (U0 (2)C, )l du(e)- @.8)

Looking at o; as o - f, where o = o, - f~! : G/H — G is a genuine section
of the principal bundle G — G/ H; performing the change of variables y = f(x)
in (2.8), one obtains an integral similar to the previous one (2.1), but with dv(x)
replaced by du(z) = (F~1)/(z)dwv(z). The resulting measure z is not usually the
o(z)translate of v, since (f~1)'(2) # A(o(z),z) in general. Therefore we shali
call the vectors .y = U(o- f(z))( a family of quasi-coherent states. They enjoy all
the nice properties of the coherent states (2.3) except covariance, in the sense that
the two properties (i) and (ii) do not necessarily hold any more.

In fact, if we replace in (2.1) dup5y(2) = A(o(z}, =) du(z) by an arbitrary quasi-
invariant measure du(2) = a(z)dv(x), with oz} # A(o(=), ), we still do have
a useful overcomplete set of vectors, namely

8 = {(he) = Ulo(2))(, = € X}. 2.9)

As before those vectors will be called quasi-coherent states [3-6]. However, it may
happen that the integral with the covariant factor A(o(x), #) instead of o), actually
diverges; this means that there are no ‘true’ coherent states associated with the section
o, and the given representation.

To conclude with generalities, it is worthwhile to mention that one still faces the
fact that the operator AS , Which is ‘resolved’ by the family of coherent states thus
constructed is not necessarily a multiple of the identity, However it is always possible
to recover a genuine resolution of the identity by introducing a weighting operator
[4-6,23,24]. Thus in all cases one ends up with quasi-coherent states.

3. Coadjoint orbits of P(1,1)

In this section we briefly examine the ooadjoint orbit structure of PL(1,1). This is
important because, as we will see, the coherent states that we are going to construct
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will be labelled by points of suitable coadjoint orbits (phase spaces), and, as was briefly
mentioned in the introduction, this fact makes them central objects for quantization
procedures. The method that we will apply follows that of [25] and may be applied
in all cases in which the Lie group is a semidirect product (see also [26]).

Let L be a Lie group and V a real vector space. Given a representation of L
on V, we can construct the semidirect product G = V A L. Elements g of G are
written as follows

g=(v,A)= [‘3 11’] 6.1

where v € VA € L C GI(V). Elements G of the Lie algebra of &, denoted
¢ = V @ are then written as
Y w]

G=(w,Y)= [0 0 (3.2)

where w € V,Y €1 C gl(V). The adjoint representation of G on g is defined by

-1 _ -1
AYA Aw—AYA v]_ (3:3)

Ad(g)G = gGg~! = [ 0 0

Let us write a generic element of g* = V* @ [" as (£,A) with £ € V*, X € I". Then,
denoting the coadjoint representation of G as Ad', we obtain

(Ad'(g)(£,0),G)n g = ((£,1),8d(g)71G) .

= (6,ATY o+ Ay + (LATIYA) 1 G
For £ € V* and v € V define £ @ v e l* by
{fov,Y) =Yy v (3.5)
Then we finally get the formula
Ad'(g)(£, ) = (AT)*E, AdR (A + (A7) E 0 ). 36)

Here AdfI indicates the coadjoint representation of L on [*, and (A~1)* the
representation of L on V* contragredient to the original one on V. For more
details on this subject see [20,25, 26].

Let us apply (3.6) in the concrete case G = ‘Pl(l, 1) = M2ASO,(1,1) (see also
[27] and, for the corresponding analysis in the (1 +- 3)-dimensional case, [26, 28, 29)).
We may identify M? with its own dual by using the Minkowski inner product.
Elements of SOy(1,1) = £1 will be parametrized in the following way

0 , .
A, = [P p] where p° = Vp? + L. 3.7

p p

The corresponding Lie algebra so(1,1) = R is generated by the element

%=1 4] 69
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This fact, together with (3.7), implies that Adf( A,)A = ) and therefore the coadjoint
orbits of SO,(1, 1) are given by the following formula:

AN (g)(E,0) = (A6, A + (A6, Yiv) pr2) 3.9)

where g is as in (3.1) ,with A, € £1,£, v € M? and {-,-), 2 denotes the Minkowski

inner product. Now we can easily identify the coadjoint orbits of 'F’I_ (1,1): they are
given by the following families of hyperbolic cylinders (m > 0):

O=2/e? b m? el = e 4 m2 ' (3.10)

the four half-planes

&0 = ¢! >0 0= £<o (3.11)
and the degenerate orbits consisting of a single point

A = constant £E=0. ' (3.12)

The non-degenerate coadjoint orbits may be interpreted as classical phase spaces
corresponding to elementary systems having ’Pl(l,l) as relativity group [20].

As we will see, they are particularly suited for the construction of systems of
coherent states and it turns out that in each such system the states are indexed by
the points of a certain coadjoint orbit. Every orbit in turn may be identified with a
homogeneous space X = PL(1,1)/H, where H is the stabilizer of a given point of
the orbit under the coadjoint action.

4, Application: massive coherent states for ’P_|T_ LD

For a better understanding of the role of the square-integrability condition that we
have introduced in (2.8), we now return to the specific case of the Poincaré group (the
representations of Pl(l ,1) corresponding to a particle of mass m are displayed in
(A.13)). We have to select a homogeneous space to apply the previous construction.
It is natural to choose, as the homogeneous space, the corresponding classical phase

space [3,30), ie. the coadjoint orbit T, : & = /€1 + m?. Let us examine
more closely the case m = 1. The corresponding orbit I'; is generated by the point
A = 0,¢ = (1,0). Since the stabilizer of this point is the subgroup T of time
translations we obtain that I'; is isomorphic to the homogeneous space ’P}_ /T [20].

T'; is the hyperbolic cylinder of équation g0 = \/512 + 1. We may choose different
parametrizations of this orbit; the simplest one is that obtained by projection on the
£% = 0 plane, which is given by

(7.p) with 7 =X, p=¢h. @1

These coordinates do not have the meaning of classical position and momentum,
contrary to the coordinates (g,p) used in [3-6]. The relation between the two sets
reads as follows

g=7/0" p=p withp'=Vpr+1. @2)
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Nevertheless they are useful in the construction that follows. The coadjoint action
may now be rewritten in the following way

(ryp) = (7,0} = (a, Ag)(7, P) @3)
with
=714+ {Arp, Yya) e p' = pk®+ kp®. 4.9

Thus the coadjoint action on I'; may be identified with the left action [4] of ’PL 11)
on P1(1,1)/T.

The orbit I'; carries a unique (up to normalization) measure invariant with respect
to the transformations (4.4). In the parametrization (4.1), this invariant (Liouville)
measure reads as

drdp

dv(r,p) =
(7,p) 20

(= dgdp). @.5)

At this point we have to choose admissible quasi-sections o = o-f: Ty —

’Pl(l, 1) , for suitable homeomorphisms f : I'; — I';; each choice will lead to a set
of quasi-coherent states. We give three examples of such quasi-sections.

4.1. Natural (or naive) quasi-section

This quasi-section is defined by
on.(7,p) = ({0,7),4,). (4.6)

It turns out that every vector of H,,., = L*(V}_,, dk/k%) (for simplicity we write
k = k') is admissible and the following equality holds (in the sense of quadratic
forms):

[ 10mar(on(r, DO Ui w0 p) = CH™ 47)
1
where H is the energy operator, defined on a dense subset of H,,_; by

(Hy)(k) = k”%_l’(k) “8)

H-! is jts (bounded) inverse and C, is a constant depending on {. Since H is
unbounded, this quasi-section does not yield a frame [5]. Notice that, if

¢ e D(HY? (4.9)
then also U,,_;(o,(7,p)){ € D(HY?) and we obtain that the states
Crp(k) = (\fC HYAU oy (0, (T, PN RY = (/C kP ((p% — pk®)  (4.10)

yield a resolution of the identity.
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4.2. General Galilean quasi-section

The quasi-section o, is a particular case of the following general class of quasi-
sections obtained from oy

oGa(TiP) = ((0,%(P)7) s A ypy) (4.11)

where ¢ : (7,p) — (¥(p)T,p(p)) is a homeomorphism of I'; onto itself. Such
quasi-sections may be called ‘Galilean’ because they assign the value a? = 0 to every
point (7, p). For these general quasi-sections one may compute explicitly the class of
admissible vectors and the corresponding ‘resolved’ operator.

4.3, Canonical section

This section is given by

oo(T, ) = ((0,7/p"), A,). (“4.12)

We call it ‘canonical’ because it is a genuine section of the principal bundle, and also
because the coordinates (7/p’, p) = (g, p) may have the interpretation of position
and momentum. This section has been studied in [3, 6], where it was called §;. In this
cas¢ one can show that admissible vectors must satisfy again condition (4.9); under
such condition we obtain the following weak identity

/r Ut (06(T> PYYCHUmr (G0(T> B))CI (7, ) = A, (413)

where both A, and AEl are bounded operators on 7, _;- Thus in this case we
obtain a frame (in general not tight) [5].

5. Massless coherent states

Let vs now pass to the construction of masslesss coherent states. Again we have
to choose a suitable homogeneous space and a unitary irreducible representation of
‘Pl(l,l) which correspond to the massless case. First we identify the classical phase
space corresponding to a massless relativistic particle. A look at the structure of
the coadjoint orbits shows that the ones corresponding to a massless particle are the
half-planes

Di={AeR,écM?: %= £ el <O} left orbit 6.1
I,={ eR,teM*:=¢¢ >0k right orbit. (5.2)
Let us concentrate our attention on I'.. This orbit is generated by the point

A =0, £ = (1,1). The stabilizer of this point is the subgroup of right light-like
translations

L={gePi(L,1):g=(a,1),a’ =c'} (5.3)
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and therefore T, ~PI(1,1)/L,. A global parametrization of this orbit is again given
by

(r,p) with T=Xx p=¢. 5.4)
In terins of these coordinates the coadjoint action reads

(7,2} = (v, 8") = (a, A }(7, p) _

=14+ MepVoohar P ="+ E)p (5.5)
and the invariant measure becomes

du(r,p) = drdp/p. (5.6)

As for the choice of the representation, we consider the representation U, on the
Hilbert space #, that is displayed in (A.26) (we write again k = k'), Now we must
choose a quasi-section o : I'; — P and try to construct coherent states out of it.
First of all notice that the natural quasi-section o, (7,p) = ((0, T),A,) cannot do
the work. Indeed it may be directly verified that there is no ¢ € H, such that

I, (¢,é) = jr (U(00(m D))Cs B, Pdie(r, p) < 00 G.7)

(the integral is infrared divergent!). The reason for this fact is that one has

(U(on (7,2 (R) = €75¢((2" — p)k). -8)
Since p > 0 it follows that

0<(p’-p)<1 (5.9)

and therefore the argument of the function { cannot be arbitrarily dilated. A well
chosen quasi-section should have the following form

ap(T5 p) = ((0,7), Ap(p) ) (5.10)

where p: Rt — R is an auxiliary bijective map. An interesting explicit form for the
function p is the following one:

p(p) = % - g- - (5.11)

The nice features of this function are due to the following fact

1
2 = —
\P¥(p) +1 2

Consequently we obtain

S e

(5.12)

(Ulo (r,P))CHE) = 8 ¢(pk) ¢ €H,. (5.13)
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and therefore

1,68 = [ KWor oGt autrn = [7 2 [7 ZiceRbswr.
(.14)

Now we apply the Fubini-Tonelli theorem and exploit the following change of
variables:

u=kp = = ’ (5.15)
i fpllows that
L= [ Ll [ GFleP. (516

Define the following operator on H.:

D(H,) = {q& € H,;fum dk k|o(k)*> < oo} (5.17)

(H p)(k) = kd(k) ¢ € D(H,). (5-18)

H, is an unbounded self-adjoint operator on D(H,) C H, and I, ({,¢) exists if and
only if ¢ € D(H; v 2). In this case it follows that

/P U (7. 2))CHU o, (r,0) )¢l dp(ry ) = C HY? (-19)

in the sense of quadratic forms. Thus, the vectors given in (5.13) constitute a set
of massless coherent states for every ¢ € M,, but the operator that is ‘resolved’ in
(5.19) is not bounded and, moreaover, its inverse is also unbounded. Because of these
facts, this set of coherent states is more general than those considered in [6]. Let
us exploit our freedom in the choice of quasi-sections (and bundle structure) to get
a more appeahng set of massless coherent states. The quasi-section that will do the
work is given by

o(1,p) = ((0,7/p), A o)) ‘ (5:20)

With the help of this quasi-section we get the following set of states:

(Urlo(,p))C) (k) = T /P¥((k/p) ( €H,. (5:21)
In this case the integral (2.1) becomes

o * dk )

LG8 = [ dp [ BP0 (522)

By using the Fubini-Tonelli theorem again and the following change of variables
2
7.r.=E : du:—u—dp (5.23)
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we obtain
(8= [ Fiwp [~ Flewr. 524)

Therefore, vectors ¢ € H, are admissible for the quasi-section (5.20) if and only if
they satisfy the condition ¢ € D(H; /). If this condition is satisfied we obtain

co.r]tf) Lr IUP(GT(TS p))C)(Ur(o'r(Tu p))d d.u'(""s p) =] (5_25)

ie. we get a genuine resolution of the identity! We call the states defined in
equation (5.21) right coherent states. In a perfectly identical way we may construct a
corresponding set of feft coherent states. Points in T are parametrized by (=, p), with
7 € R and p € R™ ; the quasi-section has exactly the same form as in (5.20):

a(7,p) =((0,7/P), A_ i) (5.26)
Left coherent states are then defined by
(Ul (. p))C)(R) = /P ¢(kfp) ¢ eH, (.27)

and the admissibility condition is now ¢ € D(H; “?). Collecting together all this
information we finally obtain a resolution of the identity in the Krein space (A.20)

= )1+ B0+ g5 [ 10eim 2D UiCor(r, 26l o 2)

O R L L N LR GO R )

with ¢ € H), ¥ € H,.

An interesting feature of the sets of coherent states, (5.21) and (5.27), is the fact
that they are exactly identical to wavelets, ie. the coherent states of the affine group.
Indeed, we may easily convince ourselves that the previous coherent states coincide
with the wavelets given for instance in [31] making the following identifications:

I
o

% S %l = B(w). (5.29)

Note that the admissibility condition ¢ € D{H; Y 2) becomes

=3

* dk *d
W= [ Lol < oo. (530)

The invariant measure now reads

drdp _ dadb

du(r,p) = a2z

(5.31)
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Define now the following operator:

d&

U:H, = L}R,) - LA(R,, dk) (5.32)

Uk = By =wR) VR (5.33)

Then we obtain

L (Uo(r 2 B), =
/o)
= \/cifum e B( aw)P(w) dw (5:39)

which is exactly the wavelet transform for a progressive wavelet ¢ (cf [31, section
3.1]).

There is another interesting analogy; it is known that the affine group manifold,
namely the Poincaré half-plane a > 0,b € R is a phase space (this situation is in fact
. general; for any dimension n, the parameter space of n-dimensional wavelets has the
structure of a phase space, see [32] for a discussion of the case n=2). The same
phase space is recovered by looking at the coadjoint orbits of the Poincaré group.

The identification between massless coherent states and wavelets opens interesting
perspectives. So far (one-dimensional) wavelets have only been considered as with
coherent states associated to the ‘ax 4 b group, and thus have been used in various
problems of classical non-relativistic signal analysis,. Now we see that the same
wavelets are also particular coherent states of the (1+ 1}-dimensional Poincaré group,
corresponding to the massless Wigner representation (see also [21, 7]). This suggests
that they could find applications in (1 - 1)-dimensional quantum field theory and,
more generally, in conformal field theory.

In that context it is also important to understand the relationship between wavelets
and coherent states associated with massless representations of the two-dimensional
de Sitter groups SO,(1, 2) and the corresponding conformal group SO(2,2) [4,33)).
Work in this direction is in progress.
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Appendix. Representations of 771 (L1

The aim of this appendix is to derive the Wigner representations of P.T;_(l,l)
corresponding to m > 0 by a method which allows the extension to the case m = 0.
This method is nothing other than an application of Wightman’s reconstruction
theorem [13]. The key point of this construction consists in finding a Poincaré
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invariant and positive definite two-point distribution W,,(z,y) which is solution of
the Klein—-Gordon equation

(O4+mHw,, =0. (A1)
Because of Poincaré invariance we get that W, (¢,y) = W, (z — y). Furthermore
we require W, (£) to be a positive definite distribution and its Fourier transform to
have support contained in the future cone. Let S(R?) denote the Schwartz space

of infinitely differentiable functions with fast decrease at infinity. There is a natural
representation of P1(1,1) on S(R?) given by

(Ula,A)f)(=z) = F(A™Yz —a)). (A-2)
By Fourier transform we obtain the dual representation

(U(a, A)F)(k) = €% F(A k) (A3)
where we have defined

- 1 .

f) = 5 [+ s(@) e | (a4

and ke is the Minkowski inner product kz = kz' — klzl. Now we may introduce
an inner product in S(R?) by the following definition

(1,0 = [ 7@ Win(z - 0)ow) P2y @)

An explicit expression of the two-point function W, (xz — y) is obtained simply by
taking the Fourier transform of (A.1)

(k* — m®)W(k) = 0. (A.6)
Taking into account the required support properties of W we obtain
W (k) = c8(k*)6(k* — m?) (A7)

and therefore

- dit
s = Kglk N . A8
(.f g) /f( )g( )lk —V{k +m \/m ( )
or
- 1
(fom= [ T80T a9

The Wightman ideal is defined by

1% = {f € S(BR®) : {f, 9}, = 0,Yg € S(RP)). (A-10)
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The inner product (A.8) depends only on equivalence classes of D = S(R?) /I and
it is not degenerate on . It is clear that the representation (A.3) carries equivalence
classes into equivalence classes and therefore induces a representation of 'P+ {1,1) on
D. The completion of the set D in the topology defined by the inner procluct (A.8)
gives the Hilbert space

K, = L3V, Ak R0 (A11)

where VI is the forward mass hyperbola, defined by

Vh= {(k“,kl) eR%: kY =/ k124 m2} . (A12)

Now the representation (A.3) may be extended to the whole %, and we obtain the
following unitary irreducible representation of 'PI_ (L,1) on H,,:

(Unla, A)9)(k) = ¢* (A7 k) (A13)

which is exactly the Wigner representation of mass m.

The extension of this method to construct a representation of P1(1,1) in the zero
mass case is not immediate. Indeed, as is well known [8], there does not exist any
Poincaré invariant positive-definite two-point distribution W satisfying the equation
OW = 0 and such that

supp W (k) = C, = {k € R?: k*k, = 0,k° > 0). (A.14)

However, if we relax the positivity condition, we may find a Poincaré invariant
distribution having the desired support properties, namely

W(E) = —gTog(~&2 + ieky). - A15)

This distribution is not positive-definite and therefore the previous construction gives
only a non-degenerate sesquilinear form on the corresponding D

(Frg) = / @)Wz —p)o(y) Paddy. C (Ale

As before D carries a representation of P] (1,1) given by (A.3). In order to obtain a
representation on a Hilbert space we must add a new ingredient; we have to complete
D using a Hilbert majorant topology [14, 34], i.e. a Hilbert inner product (-, ) defined
on D such that

| {f-9) ISl where Ji£]* = (£, f). (A17)

The explicit construction runs as follows [12, 15} Let x € S(R?) such that ¥(0) = 1,
(x,x) = 0. Given f € S(R?) define

folz) = f(=) = F(O)x. (A.18)
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Then the desired inner product may be written as

(£,9) = {for 30} + (£, 006, 9) + F (0)5(0). (A.19)

It may be directly verified that (A.19) defines a Hilbert majorant topology. We may
complete D in this topology and obtain the Krein space [34] (actually it is a Pontriagin
space)

H=L¥C,,dk' /K)o VeX (A.20)
where X is the one-dimensional subspace generated by the function x while V is the

one-dimensional subspace generated by the vector v which is defined (by the Riesz
lemma) as the representative of the functional

=06 )= (v 1) (A21)
There exists a bounded self-adjoint operator # such that

(fag) =(fafl9) (A.ZZ)

and it may be proved that n* = 1 (Krein topology). Now the representation (A.3)
exiends to a representation U of 'P}_(l,l) defined on a dense subset of H. Several
remarks are in order. First of all we stress that this representation is not unitary
but only n-unitary, ie. (U(a,A)f, Ua,A)g) = (f,g) but (U(a, A)f, U(a,A)g) #
(f,g). Second, the representation U is neither irreducible nor completely reducible,
but non-decomposable. As a final remark we notice that the Hilbert subspace L2
may be decomposed into the following direct sum

LZ(C-]-,dkl/IkID = ?{leﬁr (A'23)
H o= LHR_,dk"{kY) M, = LA(R,,dk'/k!) (A.24)
(left and right Hilbert spaces) and correspondingly we may quotient-the representation

U and obtain two unitary irreducible representations Uy, defined on %, This
amounts to considering the matrix elements

{d)l! U(aa A)¢2)'H,(,; d’la 1[’2 € Hl(r) (AZS)

and assocxatmg with the sesquilinear forms so defined the operators Uyy(a, A). The
final resuit is

(U(a, Ay ¥)(k) = e*p(A~1k) &My, (A.26)

These are the representations of ‘PI_ (1,1) that are used in the construction of systems
of massless coherent states (but the resolution of the identity that we obtain in the
end lives in the Krein space H).



Massless coherent states 607

References

[10]
1

[t2]
[13]
[14]
[15]
[16]

[17]
[t8]
[19]
[20]
21

22)
[23]
[24]
2]

[26]
(271
(28]
(29]

[30]
[31]
[32]

(33]

B4l

Klauder J R and Skagerstam B S 1985 Coherenr States—Applications in Physics and Mathematical
Physics (Singapore: World Scientific)

Perctomov A 1986 Generalized Coherent States and Their Applications (Berlin: Springer)

AL 8T and Antoine J-P 1989 Ann. fnst H. Poincaré 51 23

Ali 8 T Antoine J-P and Gazeau J-P 1990 Ann. Inst. H Poincaré 52 90

Ali 8 T, Antoine J-P and Gazeau J-P 1991 Ann. fnst. H. FPoincaré 55 829

Ali 8 T Antoine J-P and Gazeau I-F 1991 Ann. Inst. H Poinceré 55 857

Kaiser G and Streater R F 1992 Windowed radon transforms, analytic signals, and the wave equation
Waveleis: A Tutorial in Theory and Applications ed C K Chui (London: Academic) pp 399441

Wightman A § 1964 Introduction 1o some aspects of quantized fields Leciure Notes, Cargése Summer
Schoo! (New York: Gordon and Breach)

Klaiber B 1967 The Thirring model Quantun Theory and Statistical Physics (Lectures in Theoretical
FPhysics XA} ed A O Barut and W E Brittin (New York: Gordon and Breach) pp 141-76

Bogoliubov N N, Logunov A A, Oksak A K and Thdorov | T 1987 General Principles of Quantum
Field Theory (Moscow: Nauka) ch 11

Antoine J-P 1979 Indefinite metric and Poincaré covariance in quantum field theory Mathemnatical
Aspects of Quantum Field Theory (Acta Universitas Wratislaviensis 519) ed W Karkowski, vol 1, pp
220-65, Wroclaw, 1979

Morchio G, Pierotti D and Strocchi F 1992 JSAS Preprint 84/87/mp; 1990 1 Math. Phys. 31 1467

Streater R F and Wightman A S 1964 PCT, Spin and Statistics and Al That (Reading, MA: Benjamin)

Morchio G and Strocchi F 1980 A tnst. H. Poincaré 33 251

Moschella U 1990 L Math. Phys. 31 2480

Ali 8 T and Goldin G A 1991 Quantization, coherent states and diffeomorphism groups Differential
Geomerry, Group Representations and Quantization (Lecture Notes @n Physics 379) ed T D Hennig,
W Liicke and J Tolar (Berlin: Springer) pp 147-78

Steenrod N 1951 The Topolegy of Fibre Bundles (Princeton: Princeton University Press)

Yaffe L 1932 Rev. Mod. Phys. 54 407

Ali 8 T 1985 Riv. Nuovo Cim. 8 1

Kirillov A A 1976 Elements of the Theory of Represersations (Berlin: Springer)

Paul T 1984 J. Math. Phys. 25 3252; 1985 Ondelettes et Mécanique Quantique Thése d'Etar Université
d’Aix-Marseille-II )

Gaal § A 1973 Lincar Analysis and Representation Theory (Berlin: Springer)

Torrésani B 1991 £ Marh. Phys 32 1273

Torrésani B 1992 Ann. Inst. H. Poincaré 56 215

Guillemin V and Stemberg S 1984 Symplectic Technigues it Physics (Cambridge: Cambridge
University Press)

Perroud M 1983 J Math. Phys. 24 1381

Bertrand J and Bertrand P 1990 A class of affine Wigner functions with extended covariance
properties Preprint LPTM-Paris VII

Arens R 1971 J Math. Phys 12 2415 )

Bacty H 1988 Localizability and Space it Quantum Physics (Lecture Notes in Physics 304) (Berlin:
Springer)

DeBiévre § 1989 J Maih. Phys. 30 1401

Grossmann A, Morlet J and Paul T 1986 Ann. Inst. H. Poincaré 45 293

Antoine J-P, Carretie B, Murenzi R and Piette B 1993 Image analysis with iwo-dimensional
continuous wavelet transform Signal Proc. 31 to appear

DeBiévre § and Gradechi A M El 1993 Quantum Mechanics and coherent states on the anti-de
Sitter spacetime and their Poincaré contraction Amn. Inst. A, Poincaré to appear

Bognar T 1974 Indefinite Inner Product Spaces (Berlin: Springer)



